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Abstract

We reporton our first resultson the useof AlgebraicRecon-
structionTechniques(ART) on helical cone-beamComputer-
ized Tomography(CT) data. Two variantsof ART have been
implemented:astandardonewhichconsidersasinglerayin an
iterative stepanda block versionwhich groupsseveral cone-
beamprojectionsin calculatinganiterative update.Both seem
to producehigh-quality reconstructions,althoughthe number
of cycles throughthe datato achieve those(between15 and
20),while nothuge,is largerthanthenumberof cyclesthrough
thedataneededfor reconstructingvolumesfrom dataacquired
from differentmodalities(1 iterationfor PET dataand1 to 4
iterationsfor EM data). The reasonfor thatmaybedueto the
unevencoverageof pointsby thedatacollectiongeometry, re-
sultingin a slower rateof convergence.

I. Introduction

Algorithmsfor imagereconstructionfrom projectionsform the
foundationsof modernmethodsof tomographicimagingin ra-
diology, suchashelicalcone-beamX-ray computerizedtomog-
raphy (CT). Helical cone-beamCT is an imagemodality in
which thecone-beamdataacquisitionis performedwith aheli-
cal motionof theX-ray source-detectorrelative to thepatient.
Thevalueof thehelix pitchdeterminesthespeedof dataacqui-
sition, the biggerthe pitch value,the fasterthe acquisitionis.
In [1] we showed that it is possibleto obtainhigh-qualityre-
constructionsfrom helicalcone-beamCT datausingART (Al-
gebraicReconstructionTechnique)even whenappliedto data
acquiredwhenusingaconsiderablybig pitch value.

An imagemodelingtool, which wasdescribedin a general
context in [2, 3] and utilized in image reconstructionalgo-
rithmsin [4, 5], is therepresentationof imagesandvolumesus-
ing blobs, which areradially symmetricbell-shapedfunctions
whosevalueat a distancer from theorigin is
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for 0 � r � a andis zerofor r  a. In thisequationIm denotes
themodifiedBesselfunctionof orderm, a is the radiusof the
supportof the blob andα is a parametercontrolling the blob

shape.A volumeis representedasa superpositionof N scaled
andshiftedversionsof thesameblob; i.e.,as
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where ��� x j � y j � z j ��� N
j � 1 is the set of grid points in the three-

dimensional(3D) Euclideanspaceto whichtheblobcentersare
shifted.Oncewehavechosenthesegrid pointsandthespecific
valuesof m, a andα, the volume is determinedby the finite
set � c j � N

j � 1 of real coefficients; the taskof the reconstruction
algorithmin this context is to estimatethis setof coefficients
from theprojectiondata.

Theaim of [4, 5] wasto studythechoicesof thegrid points
andof theparametersm, a andα, combinedwith implementa-
tion of thealgorithmto estimatethecoefficients,from thepoint
of view of obtaininghigh-qualityreconstructionsin a reason-
abletime.

II. Helical cone-beam reconstruction us-
ing ART

It hasbeenpointedout in [6] that applyingthe simplestform
of ART to cone-beamprojectiondataacquiredon a circular
trajectorycanresultin substandardreconstructions,andit has
beensuggestedthat a certainalterationof ART leadsto im-
provement.However, besidesanillustrationof its performance,
no properties(suchas limiting convergence)of the algorithm
have beengiven. We still needa mathematicallyrigorousex-
tensionof thecurrentlyavailabletheoryof optimizationproce-
duresto includeacceptablesolutionsof problemsarisingfrom
cone-beamdatacollection.We discussthis phenomenonin the
context of reconstructionusing ART with blobs from helical
cone-beamdatacollectedaccordingto thegeometryof [7]. In
[1] we showed that ART canindeedproducehigh-quality re-
sultswhenappliedto helicalcone-beamdata.In this paperwe
will concentrateonhow to improvetheconvergencerateof the
reconstructionalgorithmby makinguseof a block-ART algo-
rithm.



A. Standard ART

For this discussionwe adoptthe notationof [8], becauseit is
naturalboth for theassumeddatacollectionandfor themath-
ematicsthat follows. We let I denotethenumberof timesthe
X-ray sourceis pulsedas it travels its helical pathmultiplied
by thenumberof lines for which theattenuationline integrals
areestimatedin thecone-beamfor asinglepulse.ThusI is the
totalnumberof measurementsandweuseY to denotethe(col-
umn) vectorof the individual measurementsyi � for 1 � i � I.
We let N denotethe numberof grid pointsat which blobsare
centered;our desireis to estimatethecoefficients � c j � N

j � 1 and
therebydefinea volumeusing(2). For 1 � i � I, we let ai j be
theintegralof thevaluesin the jth blobalongtheline of theith
measurement(notethattheseai j canbecalculatedanalytically
for theactuallinesalongwhich thedataarecollected)andwe
denoteby A the matrix whosei jth entry is ai j. Then,usingc
to denotethe (column)vectorwhose jth componentis c j, this
vectormustsatisfythesystemof approximateequalities:

Ac � Y � (3)

In thenotationof [8] thetraditionalART procedurefor find-
ing asolutionof (3) is givenby theiterations:
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whereω � n � isarelaxationparameter. While thisprocedurehasa
mathematicallywell-definedlimiting behavior (see,e.g.,Theo-
rem1.1of [8]), in practicewedesireto stoptheiterationsearly
for reasonsof computationalcosts. We have found that for
theessentiallyparallel-beamdatacollectionmodesof fully 3D
PET[9], FourierrebinnedPET[10] andTransmissionElectron
Microscopy [11], onecyclethroughthedata(i.e.,n ! I) is suffi-
cientto provideuswith high-qualityreconstructions.However,
our preliminaryexperimentsindicatethatthis doesnot happen
with helicalcone-beamdata.

We conjecturethat the reasonfor this is the following. Let
usassociatewith the jth blob thevalue

s j ! I

∑
i � 1

ai j � for1 � j � N � (5)

For the parallel modeof datacollection the valuesof s j are
nearlythesamefor all theblobs.However, this is not thecase
for cone-beamdata. If we usethe datacollection geometry
of [7], the blob coefficientscloserto the helical sourcetrajec-
tory will havehighers j valuesthantheblobcoefficientson the
oppositesideof thetrajectoryand,ascanbeseenin (4), thisre-
sultsin someblob coefficientsbeingupdatedmorefrequently
thanothers,makingit harderfor theiterativealgorithmto con-
vergeto anacceptablesolution.

B. Block-ART

It is naturalto considerinsteadof the row-actionalgorithmic
scheme(4) its block-iterativeversion,in whichall themeasure-
mentstakenby a numberof pulsesof theX-ray sourceform a
block. A powerful theoryis developedfor this in [8]. Let M be
the numberof blocks,Yi be the L-dimensionalvectorof those
measurementswhich form the ith block andlet Ai be the cor-
respondingsubmatrixof A (we assumethateachblock hasthe
samenumberof measurements).Theorem1.3of [8] statesthat
the following block-iterative algorithmhasgoodconvergence
properties:
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where Σ � n � is an L * L relaxationmatrix. This theory cov-
ers even fully-simultaneousalgorithmic schemes(just put all
the measurementsinto a singleblock). Therearealsogener-
alizationsof the theory which allow the block sizesand the
measurement-allocation-to-blocks to changeas the iterations
proceed.

A variation on sucha block-ART algorithm is to perform
component-dependentweighting in the updateof blob coeffi-
cients. The essenceof this approachis to introducein (6) a
second(N * N) relaxationmatrix ∆ � n � in front of theAT

i . Then
weneedto answerthefollowing: For whatsimple(in thesense
of computationallyeasily implementable)pairs of relaxation
matricesΣ � n � and∆ � n � canwe simultaneouslyobtaindesirable
limiting convergencebehavior andgoodpracticalperformance
by theearlyiterates.Examplesof the∆ � n � to bestudiedarethe
diagonalmatrix whose jth entry is the reciprocalof the s j of
(5) or, alternatively, the reciprocalof a similar sumtakenover
only thosemeasurementsi which arein the block usedin the
particulariterative step.A recentlyproposedsimultaneousre-
constructionalgorithmwhich usesj-dependentweightingap-
pearsin [12], whereit is shown that a certainchoiceof such
weighting leadsto substantialaccelerationof the algorithm’s
initial convergence.

Herewe definethe weightsto beusedin the updatesbased
on thefollowing idea. Supposethatwe have takentheprojec-
tion dataof anobjectfor which all theblob coefficientsc j are
1. Then,it appearsdesirableto have a uniform assignmentof
the blob coefficientsafter a singlestepof a modifiedversion
of (6), assumingthat the initial assignmentof the blob coeffi-
cientsis zero.AssumingthattheΣ � n � is theidentity matrix,we
canachieve this aim by choosing∆ � n � to bea diagonalmatrix
whose jth entry is inverselyproportionalto the sum over all
linesin theblock of theline integral throughthe jth blob mul-
tiplied by the sumof the line integrals throughall the blobs.
Themathematicalexpressionfor this is
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In order for this to work we have to ensurethat the valueof
(7) is not zero. This is likely to demandtheforming of blocks
which correspondto morethanonepulseof theX-ray source,
sincetheraysforming a block shouldintersectall blobsin the
reconstructionregion.

III. Results

BothART (4) andtheblock-ART (describedby (6) and(7)) al-
gorithmswereusedto reconstructamodified3D Shepp-Logan
phantom[13] in which thevaluesrangefrom 0.00to 2.00,us-
ing datacollectedfrom two helix turns,with 300 projections
taken per turn and 64 rows and 128 channelsper projection
(i.e. I ! 2 * 300 * 64 * 128 ! 4,915,200).The coneandfan
anglesof the cone-beamwere9 � 460 and21� 000 , respectively.
The reconstructedvolumesconsistedof a 95 * 95 * 191 blob
coefficientsarray(2) organizedon a bccgrid (see[4]) thatwas
interpolatedto a cubicgrid with 128 * 128 * 128 voxels. Fig-
ure1 showsa � x � z � -sliceof thevolumereconstructedusingthe
standardART algorithm(a) andthe block-ART algorithm(b)
anda � y � z � -sliceusingthethestandardART algorithm(c) and
the block-ART algorithm(d). The grayscalewindow usedto
show thesliceswas[1.00,1.03].Bothalgorithmswereexecuted
for 17cyclesusingω � n � ! 0 � 01for thestandardART algorithm
and0 � 1 asa relaxationparameter(multiplying theidentityma-
trix Σ � n � ) for theblock-ART algorithm. For theblock-ART al-
gorithm,themeasureddatawasgroupedinto 75blocksformed
by 8 cone-beamseach. As onecansee,the visual quality of
thesereconstructionsis similar, althoughtheblob-ART recon-
structionseemsto producea moreuniform backgrounginside
theskull of thephantom.Thetimeneededfor bothreconstruc-
tions is similar sincethe block-ART algorithmonly carriesa
small overheadfor computingthe weightsfor eachparticular
(blob,block)pair. (Thisoverheadcanbeeliminatedby precom-
putationandstorageof theweights.)

IV. Discussion

Wepresentedhereourfirst resultsontheuseof ART techniques
for thereconstructionof helicalcone-beamCT data.Ourfuture
work will concentrateon how to optimize the algorithms,by
bothspeedingup theexecutionof asinglecycleandimproving
therateof convergenceof thealgorithms,andtheevaluationof
thesealgotihmsandotherblock-ART variants.

References

[1] G.T. Herman,S.Matej,andB.M. Carvalho.Algebraicre-
constructiontechniquesusingsmoothbasisfunctionsfor
helical cone-beamtomography. In D. Butnariu,Y. Cen-
sor, andS. Reich,editors,Inherently Parallel Algorithms
in Feasibility and Optimization and their Applications,

Studiesin ComputationalMathematics.Elsevier Science,
Netherlands,to appear.

[2] R.M. Lewitt. Multidimensionaldigital imagerepresenta-
tions usinggeneralizedKaiser-Besselwindow functions.
J. Opt. Soc. Amer. A, 7:1834–1846,1990.

[3] R.M. Lewitt. Alternativesto voxels for imagerepresen-
tation in iterative reconstructionalgorithms. Phys. Med.
Biol., 37:705–716,1992.

[4] S. Matej andR.M. Lewitt. Efficient 3D grids for image
reconstructionusing spherically-symmetricvolume ele-
ments.IEEE Trans. Nucl. Sci., 42:1361–1370,1995.

[5] S.MatejandR.M. Lewitt. Practicalconsiderationsfor 3–
D imagereconstructionusingsphericallysymmetricvol-
umeelements.IEEE Trans. Med. Imag., 15:68–78,1996.

[6] K. Mueller, R.Yagel,andJ.J.Wheller. Anti-aliasedthree-
dimensionalcone-beamreconstructionof low-contrast
objectswith algebraicmethods.IEEE Trans. Med. Imag.,
18:519–537,1999.

[7] H. Turbell andP.-E. Danielsson.Helical cone-beamto-
mography. Internat. J. Imag. Systems Tech., 11:91–100,
2000.

[8] P.P.B. Eggermont,G.T. Herman,andA. Lent. Iterativeal-
gorithmsfor for largepartitionedlinearsystemswith ap-
plicationsto imagereconstruction.Linear Algebra Appl.,
40:37–67,1981.

[9] S. Matej, G.T. Herman,T.K. Narayan,S.S.Furuie,R.M.
Lewitt, andP. Kinahan. Evaluationof task-orientedper-
formanceof several fully 3–D PET reconstructionalgo-
rithms. Phys. Med. Biol., 39:355–367,1994.

[10] T. Obi, S.Matej,R.M. Lewitt, andG.T. Herman.2.5Dsi-
multaneousmultislicereconstructionby seriesexpansion
methodsfrom Fourier-rebinnedPET data. IEEE Trans.
on Med. Imag., 19:474–484,2000.

[11] R. Marabini, G.T. Herman,andJ.M. Carazo. 3D recon-
structionin electronmicroscopy usingART with smooth
sphericallysymmetricvolumeelements(blobs).Ultrami-
crosc., 72:53–65,1998.

[12] Y. Censor, D. Gordon,andR. Gordon. Componentaver-
aging: An efficient iterative parallel algorithm for large
and sparseunstructuredproblems. Parallel Comput.,
27:777–808,2001.

[13] C. Jacobson.Fourier Methods in 3D-Reconstruction from
Cone-Beam Data. PhD thesis,Departmentof Electrical
Engineering,LinkopingUniversity, 1996.



(a) (b)

(c) (d)

Figure 1: Slicesof reconstructedShepp-Loganphantomusing the standardART algorithm (a) and (c), and the block-ART
algorithm(b) and(d), showedusingthegray-scalewindow settingsof [1.00,1.03](images(a) and(b) show a (x � z)-slicewhile
images(c) and(d) show a (y � z)-slice).Bothalgorithmswereexecutedfor 17cycles.


